Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Cell Rep ; 43(4): 113989, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38536816

ABSTRACT

Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that ß1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of ß1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase ß1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.


Subject(s)
Integrin beta1 , Neoplasm Metastasis , Serum Response Factor , ras GTPase-Activating Proteins , Humans , Integrin beta1/metabolism , Integrin beta1/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Cell Line, Tumor , Serum Response Factor/metabolism , Male , Female , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Animals , Trans-Activators/metabolism , Cell Adhesion , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic , cdc42 GTP-Binding Protein/metabolism
2.
PLoS One ; 18(4): e0283954, 2023.
Article in English | MEDLINE | ID: mdl-37014916

ABSTRACT

An in vitro model of the human blood-brain barrier was developed, based on a collagen hydrogel containing astrocytes, overlaid with a monolayer of endothelium, differentiated from human induced pluripotent stem cells (hiPSCs). The model was set up in transwell filters allowing sampling from apical and basal compartments. The endothelial monolayer had transendothelial electrical resistance (TEER) values >700Ω.cm2 and expressed tight-junction markers, including claudin-5. After differentiation of hiPSCs the endothelial-like cells expressed VE-cadherin (CDH5) and von-Willebrand factor (VWF) as determined by immunofluorescence. However, electron microscopy indicated that at set-up (day 8 of differentiation), the endothelial-like cells still retained some features of the stem cells, and appeared immature, in comparison with primary brain endothelium or brain endothelium in vivo. Monitoring showed that the TEER declined gradually over 10 days, and transport studies were best carried out in a time window 24-72hrs after establishment of the model. Transport studies indicated low permeability to paracellular tracers and functional activity of P-glycoprotein (ABCB1) and active transcytosis of polypeptides via the transferrin receptor (TFR1).


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Humans , Cells, Cultured , Hydrogels , Coculture Techniques , Cell Differentiation
3.
Front Cell Neurosci ; 16: 1065193, 2022.
Article in English | MEDLINE | ID: mdl-36545654

ABSTRACT

The blood-brain barrier (BBB) restricts paracellular and transcellular diffusion of compounds and is part of a dynamic multicellular structure known as the "neurovascular unit" (NVU), which strictly regulates the brain homeostasis and microenvironment. Several neuropathological conditions (e.g., Parkinson's disease and Alzheimer's disease), are associated with BBB impairment yet the exact underlying pathophysiological mechanisms remain unclear. In total, 90% of drugs that pass animal testing fail human clinical trials, in part due to inter-species discrepancies. Thus, in vitro human-based models of the NVU are essential to better understand BBB mechanisms; connecting its dysfunction to neuropathological conditions for more effective and improved therapeutic treatments. Herein, we developed a biomimetic tri-culture NVU in vitro model consisting of 3 human-derived cell lines: human cerebral micro-vascular endothelial cells (hCMEC/D3), human 1321N1 (astrocyte) cells, and human SH-SY5Y neuroblastoma cells. The cells were grown in Transwell hanging inserts in a variety of configurations and the optimal setup was found to be the comprehensive tri-culture model, where endothelial cells express typical markers of the BBB and contribute to enhancing neural cell viability and neurite outgrowth. The tri-culture configuration was found to exhibit the highest transendothelial electrical resistance (TEER), suggesting that the cross-talk between astrocytes and neurons provides an important contribution to barrier integrity. Lastly, the model was validated upon exposure to several soluble factors [e.g., Lipopolysaccharides (LPS), sodium butyrate (NaB), and retinoic acid (RA)] known to affect BBB permeability and integrity. This in vitro biological model can be considered as a highly biomimetic recapitulation of the human NVU aiming to unravel brain pathophysiology mechanisms as well as improve testing and delivery of therapeutics.

4.
An. R. Acad. Nac. Farm. (Internet) ; 88(número extraordinario): 198-216, diciembre 2022. tab, graf
Article in Spanish | IBECS | ID: ibc-225780

ABSTRACT

Las patologías cerebrales representan un desafío terapéutico por la restricción al paso de fármacos a través de la barrera hematoencefálica. Por ello, actualmente se persigue diseñar transportadores de fármacos capaces de atravesar de manera eficiente el endotelio cerebral tras su administración intravenosa. Sin embargo, el impacto traslacional de la nanomedicina es aún discreto. Sin duda, la transición de un desarrollo empírico hacia un diseño racional adecuado a las necesidades terapéuticas concretas en cada caso aumentará las posibilidades de éxito.Bajo esta premisa y aprovechando tanto el tropismo cerebral como la actividad antiproliferativa del cannabidiol, y a fin de contribuir al diseño racional de nanocápsulas dirigidas para el tratamiento de gliomas, hemos evaluado la influencia de distintos parámetros en su comportamiento in vitro e in vivo. Efectivamente, hemos demostrado que tanto el paso a través de barrera hematoencefálica como la captación por células de glioma, así como la velocidad de liberación de fármacos pueden modularse variando su tamaño de partícula. El método térmico de inversión de fases posibilita la obtención de nanocápsulas bajo demanda en términos de tamaño gracias al modelo matemático lineal en una variable aquí descrito.Además, hemos desarrollado una novedosa estrategia de vectorización con cannabidiol (que incluso supera a otras que ya se encuentran en ensayos clínicos). Asimismo, las nanocápsulas sirven como transportadores de liberación prolongada del cannabidiol, superando así sus problemas de formulación que venían limitando su potencial terapéutico.En conjunto, las nanocápsulas lipídicas, cargadas y funcionalizadas con cannabidiol, constituyen prometedores candidatos para el tratamiento de gliomas. (AU)


Brain diseases are a major health challenge as brain drug delivery is truly hindered by the blood-brain barrier. Therefore, targeted drug nanocarriers arise as an alternative to achieve efficient transport across the brain endothelium following minimally-invasive intravenous injection. However, the global translational impact of nanomedicine remains modest. Certainly, the transition from empirical development towards a rational design tailored to the specific disease needs is likely to improve the chances of success.Under this assumption and taking advantage of both the natural brain tropism and the antiproliferative activity of cannabidiol, to contribute to the rational design of targeted nanocapsules for glioma therapy, we have thoroughly screened the influence of distinct parameters on their in vitro and in vivo behaviour. Effectively, we have demonstrated that both the brain and glioma targeting ability and the drug release rate can be tailored by varying the particle size of the nanocapsules. This fine size-tailoring can be achieved by the phase inversion temperature method thanks to the hereindescribed linear univariate mathematical model as a function of the oily phase/surfactant mass ratio.Moreover, we have introduced, on the one hand, a pioneering brain tumor targeting strategy with cannabidiol (with better targeting properties than other strategies that have already reached the clinical trials stage) and, on the other hand, nanocapsules as extendedrelease carriers of cannabidiol to overcome the formulation problems that have traditionally constrained its therapeutic potential.Altogether, small lipid nanocapsules loaded and functionalized with cannabidiol arise as promising dually-targeted candidates for intravenous treatment of glioma. (AU)


Subject(s)
Humans , Temperature Inversion , Nanomedicine , Mathematics , Cannabidiol
5.
Methods Mol Biol ; 2492: 315-331, 2022.
Article in English | MEDLINE | ID: mdl-35733054

ABSTRACT

Adhesion between leukocytes and brain endothelial cells, which line cerebral blood vessels, is a key event in both physiological and pathological conditions such as neuroinflammatory diseases. Leukocyte recruitment from blood into tissues is described as a multistep process involving leukocyte rolling on endothelial cells, adhesion, crawling, and diapedesis under hemodynamic shear stress. In neuroinflammatory conditions, there is an increase in leukocyte adhesion to the brain endothelial cells, activated by proinflammatory molecules such as cytokines. Here, we describe an in vitro technique to study the interaction between human leukocytes with human brain endothelial cells under shear stress mimicking the blood flow in vivo, coupled to live-cell imaging.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Brain , Cell Adhesion/physiology , Endothelium, Vascular , Humans , Leukocytes
6.
Pharmaceutics ; 13(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34575601

ABSTRACT

Blood-brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders.

7.
Neurobiol Aging ; 101: 273-284, 2021 05.
Article in English | MEDLINE | ID: mdl-33579556

ABSTRACT

Blood-brain barrier (BBB) breakdown occurs in aging and neurodegenerative diseases. Although age-associated alterations have previously been described, most studies focused in male brains; hence, little is known about BBB breakdown in females. This study measured ultrastructural features in the aging female BBB using transmission electron microscopy and 3-dimensional reconstruction of cortical and hippocampal capillaries from 6- and 24-month-old female C57BL/6J mice. Aged cortical capillaries showed more changes than hippocampal capillaries. Specifically, the aged cortex showed thicker basement membrane, higher number and volume of endothelial pseudopods, decreased endothelial mitochondrial number, larger pericyte mitochondria, higher pericyte-endothelial cell contact, and increased tight junction tortuosity compared with young animals. Only increased basement membrane thickness and pericyte mitochondrial volume were observed in the aged hippocampus. Regional comparison revealed significant differences in endothelial pseudopods and tight junctions between the cortex and hippocampus of 24-month-old mice. Therefore, the aging female BBB shows region-specific ultrastructural alterations that may lead to oxidative stress and abnormal capillary blood flow and barrier stability, potentially contributing to cerebrovascular diseases, particularly in postmenopausal women.


Subject(s)
Aging/pathology , Blood-Brain Barrier/ultrastructure , Capillaries/ultrastructure , Cerebral Cortex/blood supply , Cerebral Cortex/ultrastructure , Hippocampus/blood supply , Hippocampus/ultrastructure , Animals , Basement Membrane/pathology , Basement Membrane/ultrastructure , Blood-Brain Barrier/pathology , Capillaries/pathology , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondrial Size , Oxidative Stress , Pericytes/pathology , Pericytes/ultrastructure , Postmenopause
8.
Acta Neuropathol Commun ; 9(1): 12, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413694

ABSTRACT

Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer's disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of ß-amyloid (Aß) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aß from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aß40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aß removal from the brain and reduce its deposition as CAA.


Subject(s)
Acetylcholine/metabolism , Amyloid beta-Peptides/metabolism , Cerebral Amyloid Angiopathy/physiopathology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Cholinergic Fibers/physiology , Cholinergic Neurons/physiology , Hippocampus/blood supply , Nitric Oxide Synthase Type III/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Cerebral Amyloid Angiopathy/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebrovascular Circulation/drug effects , Cholinergic Fibers/drug effects , Cholinergic Fibers/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Neurovascular Coupling/drug effects , Neurovascular Coupling/physiology , Saporins/toxicity , Septal Nuclei , Vasodilator Agents/pharmacology
9.
Biomedicines ; 8(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348877

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CCM genes, CCM3, in endothelial and non-endothelial cells. By comparing protein expression in control and CCM3-silenced cells, we found that the levels of the Epidermal Growth Factor Receptor (EGFR) are higher in CCM3-deficient cells, which adds to the known upregulation of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) in these cells. Whereas VEGFR2 is upregulated at the mRNA level, EGFR has a prolonged half-life. Inhibition of EGFR family members in CCM3-deficient cells does not revert the known cellular effects of lack of CCM genes, but it induces significantly more apoptosis in CCM3-deficient cells than in control cells. We propose that the susceptibility to tyrosine kinase inhibitors of CCM3-deficient cells can be harnessed to kill the abnormal cells of these lesions and thus treat CCMs pharmacologically.

10.
Fluids Barriers CNS ; 17(1): 10, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32036786

ABSTRACT

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a neurological disorder characterised by raised cerebrospinal fluid (CSF) pressure in the absence of any intracranial pathology. IIH mainly affects women with obesity between the ages of 15 and 45. Two possible mechanisms that could explain the increased CSF pressure in IIH are excessive CSF production by the choroid plexus (CP) epithelium or impaired CSF drainage from the brain. However, the molecular mechanisms controlling these mechanisms in IIH remain to be determined. METHODS: In vivo ventriculo-cisternal perfusion (VCP) and variable rate infusion (VRI) techniques were used to assess changes in rates of CSF secretion and resistance to CSF drainage in female and male Wistar rats fed either a control (C) or high-fat (HF) diet (under anaesthesia with 20 µl/100 g medetomidine, 50 µl/100 g ketamine i.p). In addition, CSF secretion and drainage were assessed in female rats following treatment with inflammatory mediators known to be elevated in the CSF of IIH patients: C-C motif chemokine ligand 2 (CCL2), interleukin (IL)-17 (IL-17), IL-6, IL-1ß, tumour necrosis factor-α (TNF-α), as well as glucocorticoid hydrocortisone (HC). RESULTS: Female rats fed the HF diet had greater CSF secretion compared to those on control diet (3.18 ± 0.12 µl/min HF, 1.49 ± 0.15 µl/min control). Increased CSF secretion was seen in both groups following HC treatment (by 132% in controls and 114% in HF) but only in control rats following TNF-α treatment (137% increase). The resistance to CSF drainage was not different between control and HF fed female rats (6.13 ± 0.44 mmH2O min/µl controls, and 7.09 ± 0.26 mmH2O min/µl HF). and when treated with CCL2, both groups displayed an increase in resistance to CSF drainage of 141% (controls) and 139% (HF) indicating lower levels of CSF drainage. CONCLUSIONS: Weight loss and therapies targeting HC, TNF-α and CCL2, whether separately or in combination, may be beneficial to modulate rates of CSF secretion and/or resistance to CSF drainage pathways, both factors likely contributing to the raised intracranial pressure (ICP) observed in female IIH patients with obesity.


Subject(s)
Cerebrospinal Fluid Leak/drug therapy , Cerebrospinal Fluid/drug effects , Cytokines/pharmacology , Diet , Animals , Brain/drug effects , Brain/physiopathology , Cytokines/metabolism , Female , Hydrodynamics , Intracranial Hypertension/drug therapy , Intracranial Pressure/drug effects , Male , Obesity/complications , Rats, Wistar
11.
Front Aging Neurosci ; 11: 172, 2019.
Article in English | MEDLINE | ID: mdl-31333445

ABSTRACT

Increasing evidence supports a role for cerebrovasculature dysfunction in the etiology of Alzheimer's disease (AD). Blood vessels in the brain are composed of a collection of cells and acellular material that comprise the neurovascular unit (NVU). The NVU in the hippocampus and cortex receives innervation from cholinergic neurons that originate in the basal forebrain. Death of these neurons and their nerve fibers is an early feature of AD. However, the effect of the loss of cholinergic innervation on the NVU is not well characterized. The purpose of this study was to evaluate the effect of the loss of cholinergic innervation of components of the NVU at capillaries, arteries and veins in the hippocampus and cortex. Adult male C57BL/6 mice received an intracerebroventricular injection of the immunotoxin p75NTR mu-saporin to induce the loss of cholinergic neurons. Quadruple labeling immunohistochemistry and 3D reconstruction were carried out to characterize specific points of contact between cholinergic fibers and collagen IV, smooth muscle cells and astrocyte endfeet. Innate differences were observed between vessels of the hippocampus and cortex of control mice, including a greater amount of cholinergic contact with perivascular astrocytes in hippocampal capillaries and a thicker basement membrane in hippocampal veins. Saporin treatment induced a loss of cholinergic innervation at the arterial basement membrane and smooth muscle cells of both the hippocampus and the cortex. In the cortex, there was an additional loss of innervation at the astrocytic endfeet. The current results suggest that cortical arteries are more strongly affected by cholinergic denervation than arteries in the hippocampus. This regional variation may have implications for the etiology of the vascular pathology that develops in AD.

12.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242592

ABSTRACT

Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer's disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain.


Subject(s)
Blood-Brain Barrier/metabolism , Gene Expression Regulation , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Age Factors , Animals , Apoptosis/genetics , Autophagy/genetics , Blood-Brain Barrier/pathology , Computational Biology/methods , Gene Expression Profiling , Humans , Immunohistochemistry , Mice , Transcriptome
13.
An Real Acad Farm ; 85(2): 198-216, abr.-jun. 2019. tab, graf, ilus
Article in English | IBECS | ID: ibc-186177

ABSTRACT

Brain diseases are a major health challenge as brain drug delivery is truly hindered by the blood-brain barrier. Therefore, targeted drug nanocarriers arise as an alternative to achieve efficient transport across the brain endothelium following minimally-invasive intravenous injection. However, the global translational impact of nanomedicine remains modest. Certainly, the transition from empirical development towards a rational design tailored to the specific disease needs is likely to improve the chances of success. Under this assumption and taking advantage of both the natural brain tropism and the antiproliferative activity of cannabidiol, to contribute to the rational design of targeted nanocapsules for glioma therapy, we have thoroughly screened the influence of distinct parameters on their in vitro and in vivo behaviour. Effectively, we have demonstrated that both the brain and glioma targeting ability and the drug release rate can be tailored by varying the particle size of the nanocapsules. This fine size-tailoring can be achieved by the phase inversion temperature method thanks to the hereindescribed linear univariate mathematical model as a function of the oily phase/surfactant mass ratio. Moreover, we have introduced, on the one hand, a pioneering brain tumor targeting strategy with cannabidiol (with better targeting properties than other strategies that have already reached the clinical trials stage) and, on the other hand, nanocapsules as extendedrelease carriers of cannabidiol to overcome the formulation problems that have traditionally constrained its therapeutic potential. Altogether, small lipid nanocapsules loaded and functionalized with cannabidiol arise as promising dually-targeted candidates for intravenous treatment of glioma


Las patologías cerebrales representan un desafío terapéutico por la restricción al paso de fármacos a través de la barrera hematoencefálica. Por ello, actualmente se persigue diseñar transportadores de fármacos capaces de atravesar de manera eficiente el endotelio cerebral tras su administración intravenosa. Sin embargo, el impacto traslacional de la nanomedicina es aún discreto. Sin duda, la transición de un desarrollo empírico hacia un diseño racional adecuado a las necesidades terapéuticas concretas en cada caso aumentará las posibilidades de éxito. Bajo esta premisa y aprovechando tanto el tropismo cerebral como la actividad antiproliferativa del cannabidiol, y a fin de contribuir al diseño racional de nanocápsulas dirigidas para el tratamiento de gliomas, hemos evaluado la influencia de distintos parámetros en su comportamiento in vitro e in vivo. Efectivamente, hemos demostrado que tanto el paso a través de barrera hematoencefálica como la captación por células de glioma, así como la velocidad de liberación de fármacos pueden modularse variando su tamaño de partícula. El método térmico de inversión de fases posibilita la obtención de nanocápsulas bajo demanda en términos de tamaño gracias al modelo matemático lineal en una variable aquí descrito. Además, hemos desarrollado una novedosa estrategia de vectorización con cannabidiol (que incluso supera a otras que ya se encuentran en ensayos clínicos). Asimismo, las nanocápsulas sirven como transportadores de liberación prolongada del cannabidiol, superando así sus problemas de formulación que venían limitando su potencial terapéutico. En conjunto, las nanocápsulas lipídicas, cargadas y funcionalizadas con cannabidiol, constituyen prometedores candidatos para el tratamiento de gliomas


Subject(s)
Humans , Animals , Mice , Glioma/drug therapy , Brain Neoplasms/drug therapy , Nanocapsules/administration & dosage , Drug Delivery Systems , Cannabinoids/administration & dosage , Tumor Cells, Cultured
14.
Mol Pharm ; 16(5): 1999-2010, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30865462

ABSTRACT

Diseases affecting the central nervous system (CNS) should be regarded as a major health challenge due to the current lack of effective treatments given the hindrance to brain drug delivery imposed by the blood-brain barrier (BBB). Since efficient brain drug delivery should not solely rely on passive targeting, active targeting of nanomedicines into the CNS is being explored. The present study is devoted to the development of lipid nanocapsules (LNCs) decorated with nonpsychotropic cannabinoids as pioneering nonimmunogenic brain-targeting molecules and to the evaluation of their brain-targeting ability both in vitro and in vivo. Noticeably, both the permeability experiments across the hCMEC/D3 cell-based in vitro BBB model and the biodistribution experiments in mice consistently demonstrated that the highest brain-targeting ability was achieved with the smallest-sized cannabinoid-decorated LNCs. Importantly, the enhancement in brain targeting achieved with the conjugation of cannabidiol to LNCs outperformed by 6-fold the enhancement observed for the G-Technology (the main brain active strategy that has already entered clinical trials for the treatment of CNS diseases). As the transport efficiency across the BBB certainly determines the efficacy of the treatments for brain disorders, small cannabinoid-decorated LNCs represent auspicious platforms for the design and development of novel therapies for CNS diseases.


Subject(s)
Blood-Brain Barrier/drug effects , Cannabidiol/pharmacology , Drug Delivery Systems/methods , Lipids/chemistry , Nanocapsules/chemistry , Nanoconjugates/chemistry , Animals , Brain Diseases/drug therapy , Cannabidiol/chemistry , Cannabidiol/metabolism , Capillary Permeability/drug effects , Cell Line , Cell Survival/drug effects , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Male , Mice , Mice, Inbred ICR , Nanomedicine/methods , Tissue Distribution
15.
Blood ; 133(3): 193-204, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30442679

ABSTRACT

Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of Krit1 (Krit1 ECKO ) or Pdcd10 (Pdcd10 ECKO ), which cause CCM formation, results in increased levels of vascular TM and EPCR, as well as in enhanced generation of activated protein C (APC) on endothelial cells. Increased TM expression is due to upregulation of transcription factors KLF2 and KLF4 consequent to the loss of KRIT1 or PDCD10. Increased TM expression contributes to CCM hemorrhage, because genetic inactivation of 1 or 2 copies of the Thbd gene decreases brain hemorrhage in Pdcd10 ECKO mice. Moreover, administration of blocking antibodies against TM and EPCR significantly reduced CCM hemorrhage in Pdcd10 ECKO mice. Thus, a local increase in the endothelial cofactors that generate anticoagulant APC can contribute to bleeding in CCMs, and plasma soluble TM may represent a biomarker for hemorrhagic risk in CCMs.


Subject(s)
Anticoagulants/metabolism , Apoptosis Regulatory Proteins/physiology , Cerebral Hemorrhage/diagnosis , Endothelium, Vascular/pathology , Hemangioma, Cavernous, Central Nervous System/complications , KRIT1 Protein/physiology , Membrane Proteins/physiology , Protein C/metabolism , Proto-Oncogene Proteins/physiology , Thrombomodulin/blood , Adult , Animals , Blood Coagulation , Case-Control Studies , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/etiology , Endothelial Protein C Receptor/metabolism , Endothelium, Vascular/metabolism , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Humans , Kruppel-Like Factor 4 , Mice , Mice, Knockout , Signal Transduction , Young Adult
16.
Int J Nanomedicine ; 13: 5577-5590, 2018.
Article in English | MEDLINE | ID: mdl-30271148

ABSTRACT

OBJECTIVE: The first aim of this study was to develop a nanocarrier that could transport the peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium and examine the mechanism of nanoparticle transcytosis. The second aim was to determine whether these nanocarriers could successfully treat a mouse model of Alzheimer's disease (AD). METHODS: PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol (PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, confocal and transmission electron microscopy. The effectiveness of the treatment was assessed in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of ß-amyloid. RESULTS: Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain endothelium compared with the free drug and the carriers showed a delayed release profile of PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor did they alter the permeability of the blood-brain barrier model. Electron microscopy indicated that the nanocarriers were transported from the apical to the basal surface of the endothelium by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of ß-amyloid in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspondingly reduced. CONCLUSION: PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be loaded with a pharmaceutical agent to effectively treat a mouse model of AD.


Subject(s)
Alzheimer Disease/drug therapy , Disease Models, Animal , Drug Carriers/chemistry , Nanoparticles/administration & dosage , PPAR gamma/agonists , Polyesters/chemistry , Polyethylene Glycols/chemistry , Thiazolidinediones/administration & dosage , Amyloid beta-Protein Precursor/genetics , Animals , Blood-Brain Barrier/drug effects , Cells, Cultured , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , In Vitro Techniques , Male , Memory Disorders/prevention & control , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nanoparticles/chemistry , Pioglitazone , Presenilin-1/genetics , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology
18.
Fluids Barriers CNS ; 14(1): 31, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29110676

ABSTRACT

This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers.


Subject(s)
Blood-Brain Barrier , Nervous System Diseases/drug therapy , Animals , Central Nervous System , Humans
19.
Sci Rep ; 7(1): 9574, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851955

ABSTRACT

Brain injury elicits a systemic acute-phase response (APR), which is responsible for co-ordinating the peripheral immunological response to injury. To date, the mechanisms responsible for signalling the presence of injury or disease to selectively activate responses in distant organs were unclear. Circulating endogenous extracellular vesicles (EVs) are increased after brain injury and have the potential to carry targeted injury signals around the body. Here, we examined the potential of EVs, isolated from rats after focal inflammatory brain lesions using IL-1ß, to activate a systemic APR in recipient naïve rats, as well as the behavioural consequences of EV transfer. Focal brain lesions increased EV release, and, following isolation and transfer, the EVs were sequestered by the liver where they initiated an APR. Transfer of blood-borne EVs from brain-injured animals was also enough to suppress exploratory behaviours in recipient naïve animals. EVs derived from brain endothelial cell cultures treated with IL-1ß also activated an APR and altered behaviour in recipient animals. These experiments reveal that inflammation-induced circulating EVs derived from endothelial cells are able to initiate the APR to brain injury and are sufficient to generate the associated sickness behaviours, and are the first demonstration that EVs are capable of modifying behavioural responses.


Subject(s)
Acute-Phase Reaction/metabolism , Encephalitis/metabolism , Encephalitis/physiopathology , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Illness Behavior , Animals , Behavior, Animal , Cytokines/metabolism , Disease Models, Animal , Encephalitis/etiology , Encephalitis/pathology , Hepatitis/etiology , Hepatitis/metabolism , Hepatitis/pathology , Inflammation Mediators/metabolism , Kupffer Cells/metabolism , Male , Rats
20.
Mol Pain ; 13: 1744806917727625, 2017.
Article in English | MEDLINE | ID: mdl-28814148

ABSTRACT

Background: Blood­nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Methods: Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/ß-catenin pathway in chronic constriction injury-mediated blood­nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. Results: IoN-CCI induced early alterations in the vascular endothelial-cadherin/ß-catenin/Frizzled-7 complex, shown to participate in local blood­nerve barrier disruption via a ß-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/ß-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood­nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood­nerve barrier disruption. Conclusion: A crosstalk between Wnt/ß-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood­nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.


Subject(s)
Blood-Nerve Barrier/metabolism , Endothelial Cells/metabolism , Wnt Signaling Pathway/physiology , Animals , Chronic Disease , Constriction, Pathologic , Hedgehog Proteins/metabolism , Male , Neuralgia/metabolism , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...